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Abstract. In this paper we present the initial results in our development of Distributional DSMC (DDSMC) methods. By
modifying Nanbu’s method to allow distributed velocities,we have shown that DSMC methods are not limited to convergence
in probability measure alone, but can achieve strong convergence forL1 solutions of the Boltzmann equation and pointwise
convergence for bounded solutions. We also present an initial attempt at a general distributional method and apply these
methods to the Bobylev, Krook, and Wu space homogeneous solution of the Boltzmann equation.
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INTRODUCTION

The Direct Simulation Monte Carlo (DSMC) method representsa probabilistic simulation of the interactions of a
fraction of the number of actual particles in a gas. An important parameter in such simulations is the statistical particle
weightW = N/Np which represents the total number of actual particles that each simulated particle represents. In
practice,W may be on the order of 106 or greater. In traditional DSMC methods, particles may possess only a single
velocity, energy state, and position at any point in the simulation. This gives rise to a singular or discrete probability
density function

f̂ (~c) =
1

Np

Np

∑
i=1

δ (~c−~ci) (1)

Nanbu [1] developed an approximation to the solution of the space homogeneous Boltmann equation with the above
expression as the initial condition. Utilizing this solution, Nanbu developed a DSMC scheme. Babovsky and Illner
later proved that Nanbu’s scheme converged in probability measure to the solution of the Boltzmann equation [2, 3].

Although mathematically convenient, the representation of the distribution function in Equation (1) is nonphysical
in any case whereNp < N. The assumption of singular velocities has significant implications on the results obtained
by such a scheme. Specifically, we suggest that this assumption is responsible for a significant portion of the variance
associated with DSMC methods. This is evident when one considers the implications for the evolution of the velocity
distribution function. When two simulated particles have their velocities altered by a collision, we presume that the
millions of acutal particles these particles represent alldepart on the same velocity vector, resulting in a significant
change to the distribution function. In reality, these millions of particles cannot possess the same exact velocity, and
the collision interaction is more aptly described as an evolution of the distribution function by collisional effects.

From this premise, we have undertaken a study to explore the value and complications of incorporating distributed
particle velocities in the DSMC framework [4, 5]. We proposethat if a scheme can be developed which allows a
particle’s velocity to be distributed, improved convergence and variance reduction should be achievable.

Toward this end, we have developed two methods for attempting to distribute a particle’s velocity. The first, applies
kernel density estimation (KDE) to the DSMC method and allows each particle’s velocity to be distributed according
to a Gaussian. The second, more general method we have developed is termed Distributional DSMC. In this construct,
kernel density estimation methods are applied at the particle level to allow each particle’s velocity to be distributed
arbitrarily.



DSMC-KDE

As we have already presented results relating to the development of the DSMC-KDE method [4, 5], we present
only a brief overview of the key features here. The basic premise relies on the replacement of the distribution function
described by Equation ( 1) with the following kernel densityestimator

f̃ (~c) =
1

Nph3

Np

∑
i=1

K
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~c−~ci

h

)

(2)

HereK is the kernel function, which we choose to be a Gaussian. Namely,

K (~x) = (2π)−3/2exp

(

−‖~x‖2

2

)

(3)

h is termed the collision bandwidth, and should be chosen in such a way as to minimize the error between the actual
distribution and the estimator. Based on the results of Wand& Jones [6] we chooseh as follows

h =

[

32

3
√

2Np

] 1
5

σ̂ (4)

Whereσ̂ is an estimate of the standard deviation off . The key feature here is thath is choosen to depend onNp in
such a way that limNp→∞ h(Np) = 0. It can be shown thatK becomes a delta family asNp → ∞.

We have shown [4] that this interpretation results in identical collision selection and modeling rules for the center
points of the Maxwellians in the limit asNp → ∞ and that the stochastic rules governing the evolution of the
simulation can be chosen to be identical to Nanbu’s method. Equivalently, Equation (2) may simply be interpreted as
a kernel density estimator which utilizes the particle velocities obtained via Nanbu’s method as samples of the overall
distribution function. In this case, the stochastic simulation remains the same as Nanbu’s method and the distribution
function may be calculated from Equation (2) post-simulation. It should be noted that Nanbu’s model was selected
for this effort because of its traceability to the Boltzmannequation but it is not necessarily the most desirable model
for implementing this method for practical applications. Rather, we utilize Nanbu’s method to identify the potential
benefits of the Distributional DSMC Concept which should be applicable to any existing method.

Utilizing this interpretation, we have proven [4] that thismethod maintains the convergence demonstrated for
existing methods, achieves strong convergence forL∞, and pointwise convergence bounded solutions, niether of which
is possible with the original method. Such solutions arise frequently and are of greater practical interest than the
generalL1 case. As the main thrust of this paper is not a detailed mathematical proof of convergence, these results are
summarized here in the following theorems.

Theorem 1. If the Boltzmann equation with initial data f0 has a non-negative solution f ∈ L1, then the solution f̃ of
the DSMC-KDE method converges weakly in L1 to f such that for any bounded and continuous test function φ on R

3,

lim
∆t→0

lim
N→∞

∫

R3

φ (~c) f̃ (~c)d~c =
∫

R3

φ (~c) f (~c)d~c

Corollary 1. If the Boltzmann equation with initial data f0 has a non-negative solution f ∈ L∞, then the solution f̃ of
the DSMC-KDE method converges strongly in L∞ to f . That is,

lim
∆t→0

lim
Np→∞

∥

∥ f̃ − f
∥

∥

∞ = 0

Corollary 2. If the Boltzmann equation with initial data f0 has a non-negative bounded solution f , then the solution
f̃ of the DSMC-KDE method converges pointwise to f .

The DSMC-KDE method was developed to serve as a stepping stone and building block of a more comprehensive
method. Although not a fully distributional method, we haveshown [4, 5] that stronger forms of convergence than
acheivable by traditional DSMC are possible.



DISTRIBUTIONAL DSMC

We next sought to develop a fully distributional method, which would allow for particle velocities to be distributed
arbitrarily. Development of a fully distributional methodrequires a full re-derivation of the DSMC algorithm. We have
developed a simplified scheme that allows reuse of the existing collision selection rules while modelling intermolecular
collisions in a fully distributional sense.

The basic premise is to apply kernel density estimation at the particle level distribution functions instead of at the
overall distribution function level. This allows a particle’s velocity to be distributed arbitrarily, limited only bythe
number of velocity samples per particle,Nv. In this case, theith particle’s distribution function is given by

fi (~c) =
1

Nvh3
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∑
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h

)

(5)

where~ci j is the jth velocity sample in theith particle’s distribution,K is given by Equation (3) andh is now given by
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[
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The overall distribution function may therefore be writtenas

f̃ (~c) =
1

NpNvh3

Nv

∑
=1

K

(
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h

)

(7)

Developing a collision selection criteria based on Equation (7) is a non-trivial excercise. To simplify the process, we
assume (only for the purpose of collision selection) that a particle’s velocity distribution is in some sense “close” toa
Gaussian centered at its mean velocity. Under this assumption, the selection criteria can be chosen to be the same as
Nanbu’s method (or the DSMC-KDE method) based upon the mean particle velocities.

Once a collision pair has been identified, we seek to evolve the combined velocity distribution of the pair through
the time step∆t. The combined distribution of a collision pair is given by

F (~c) =
1
2

[ fi (~c)+ f j (~c)] =
1

2Nvh3
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K
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h
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The process by which the combined distribution is evolved through ∆t is a topic to be explored in future work.
Conceptually, any method which is consistent with the Boltzmann equation should be useable. Such a method might
be a moment method, model equation, or even DSMC itself. For our initial development we utilized the BGK equation,
however as the BGK equation is not consistent with the Boltzmann equation we utilized this model only for testing
purposes. The method we have currently implemented employsDSMC-KDE to evolve the combined distribution
function. In the limit asNv becomes large, the method becomes fully consistent with theDSMC-KDE model with
2Nv simulated particles, and the method may be reapplied to compute interactions between these samples. This has
an interesting side effect in that it allows any particle which is selected for collision to self interact. This would be
impossible if each simulated particle represented one actual particle, but as each simulated particle represents a large
collection of particles this is perfectly acceptable, and in fact desirable.

NUMERICAL IMPLEMENTATION

To explore the DDSMC method currently proposed we applied the scheme to the space homogeneous solution of
Bobolev, Krook, and Wu [7]. To further simplify, we assume the Maxwellian molecular model. The distribution
function is spherically symmetric and in this case the distribution of molecular speed is given by [1]

F (c,τ) = 4π (πα)−
3
2
(

α1ĉ2 + α2ĉ4)exp

(

− ĉ2

α

)

(9)



where,

α1 =
5α −3

2α

α2 =
1−α

α2

ĉ =
c

√

2kT/m

α (τ) = 1− 2
5

e−τ

τ = πA2 (5)nt
√

2b/m

The results of this analysis are shown in Figure 1. Figure 2 shows the mean steady stateL1 error for a 100 run
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FIGURE 1. DDSMC Solution for x-velocity Distribution of the Krook-WuProblem.Np = 20, Nv = 16, Nsamp = 100, ∆τ =
1.4E −3, Total Computational Time = 46.27 sec

ensemble as a function ofNp andNv. Here we see significantly improved results over the original Nanbu method, as
well as DSMC-KDE. Finally in Figure 3 we have the computational time per sample as a function ofNp andNv. Note
that although the computational time per sample is increased by the additional complexity of the method, the increase
in accuracy over the DSMC-KDE method far outweighs the drawbacks. This is evident in Figures 4 and 5 where the
values are plotted against the total number of parameters per sample,NpNv.

CONCLUSIONS AND FUTURE WORK

Our current results would seem to indicate that there is potentially significant benefits to be gained by distributing
particle velocities in DSMC simulations. Future work will focus on formally analyzing the convergence and computa-
tional complexity of the Distributional DSMC method. Although the current work is limited to the space homogenous
case, it is conjectured that the method should be fairly easily generalized to multiple dimensions. The variance reduc-
tion properties of these methods are yet to be addressed, however, we believe significant benefits may be otained. The
effect of a particle carrying its distribution function through the flowfield may have a similar effect as Information
Preservation DSMC.
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